Business Problem
Data pipelines break silently. Bad data flows downstream for hours before anyone notices, causing incorrect reports, failed ML models, and eroded trust in data.
Solution Overview
Connect PostgreSQL, AWS S3, and Slack MCP Servers to build ETL pipelines with built-in data quality checks that alert on anomalies and auto-pause on critical failures.
Implementation Steps
Extract from Sources
Configure PostgreSQL MCP Server to extract data from operational databases on a schedule.
Transform and Validate
Apply business rules, dedup, and run data quality checks (null rates, schema drift, value ranges).
Load to Data Warehouse
Store transformed data in S3/data warehouse with partitioning and versioning.
async function runETL() {
const raw = await postgres.query('SELECT * FROM orders WHERE updated_at > $1', [lastRun]);
const validated = validateData(raw.rows);
if (validated.errorRate > 0.05) {
await slack.sendMessage({ channel: '#data-alerts', text: `ETL paused: ${validated.errorRate*100}% error rate` });
return;
}
await s3.putObject({ bucket: 'data-lake', key: `orders/${today}/data.parquet`, body: transform(validated.rows) });
}Monitor Pipeline Health
Track pipeline runs, data freshness, and quality metrics with automated alerting.
Code Examples
function validateData(rows) {
const errors = [];
for (const row of rows) {
if (!row.customer_id) errors.push({ row: row.id, field: 'customer_id', error: 'null' });
if (row.amount < 0) errors.push({ row: row.id, field: 'amount', error: 'negative' });
}
return { rows, errors, errorRate: errors.length / rows.length };
}